手把手教你写C语言线程池中,已经实现了C语言版的线程池,如果我们也学过C++的话,可以将其改为C++版本,这样代码不管是从使用还是从感观上都会更简洁一些。

对这些代码做从C到C++的迁移主要用到了C++三大特性中的封装,因此难度不大,对应C++初学者来说有助于提高编码水平和对面向对象的理解,对于熟练掌握了C++的人来说就是张飞吃豆芽 -- 小菜一碟(so easy)

关于线程的在此就不再过多阐述,对于前面文章中设计的线程池,按照面向对象的思想进行拆分可以分为两部分(纯属个人见解,有不同的想法也正常):任务队列类线程池类

本文中关于线程池实现和编写步骤相关细节,请观看视频

手把手教你撸一个线程池 - C++版

1. 任务队列

1.1 类声明

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
// 定义任务结构体
using callback = void(*)(void*);
struct Task
{
Task()
{
function = nullptr;
arg = nullptr;
}
Task(callback f, void* arg)
{
function = f;
this->arg = arg;
}
callback function;
void* arg;
};

// 任务队列
class TaskQueue
{
public:
TaskQueue();
~TaskQueue();

// 添加任务
void addTask(Task& task);
void addTask(callback func, void* arg);

// 取出一个任务
Task takeTask();

// 获取当前队列中任务个数
inline int taskNumber()
{
return m_queue.size();
}

private:
pthread_mutex_t m_mutex; // 互斥锁
std::queue<Task> m_queue; // 任务队列
};

其中Task是任务类,里边有两个成员,分别是两个指针void(*)(void*)void*

另外一个类TaskQueue是任务队列,提供了添加任务、取出任务、存储任务、获取任务个数、线程同步的功能。

1.2 类定义

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
TaskQueue::TaskQueue()
{
pthread_mutex_init(&m_mutex, NULL);
}

TaskQueue::~TaskQueue()
{
pthread_mutex_destroy(&m_mutex);
}

void TaskQueue::addTask(Task& task)
{
pthread_mutex_lock(&m_mutex);
m_queue.push(task);
pthread_mutex_unlock(&m_mutex);
}

void TaskQueue::addTask(callback func, void* arg)
{
pthread_mutex_lock(&m_mutex);
Task task;
task.function = func;
task.arg = arg;
m_queue.push(task);
pthread_mutex_unlock(&m_mutex);
}

Task TaskQueue::takeTask()
{
Task t;
pthread_mutex_lock(&m_mutex);
if (m_queue.size() > 0)
{
t = m_queue.front();
m_queue.pop();
}
pthread_mutex_unlock(&m_mutex);
return t;
}

2. 线程池

2.1 类声明

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class ThreadPool
{
public:
ThreadPool(int min, int max);
~ThreadPool();

// 添加任务
void addTask(Task task);
// 获取忙线程的个数
int getBusyNumber();
// 获取活着的线程个数
int getAliveNumber();

private:
// 工作的线程的任务函数
static void* worker(void* arg);
// 管理者线程的任务函数
static void* manager(void* arg);
void threadExit();

private:
pthread_mutex_t m_lock;
pthread_cond_t m_notEmpty;
pthread_t* m_threadIDs;
pthread_t m_managerID;
TaskQueue* m_taskQ;
int m_minNum;
int m_maxNum;
int m_busyNum;
int m_aliveNum;
int m_exitNum;
bool m_shutdown = false;
};

2.2 类定义

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
ThreadPool::ThreadPool(int minNum, int maxNum)
{
// 实例化任务队列
m_taskQ = new TaskQueue;
do {
// 初始化线程池
m_minNum = minNum;
m_maxNum = maxNum;
m_busyNum = 0;
m_aliveNum = minNum;

// 根据线程的最大上限给线程数组分配内存
m_threadIDs = new pthread_t[maxNum];
if (m_threadIDs == nullptr)
{
cout << "malloc thread_t[] 失败...." << endl;;
break;
}
// 初始化
memset(m_threadIDs, 0, sizeof(pthread_t) * maxNum);
// 初始化互斥锁,条件变量
if (pthread_mutex_init(&m_lock, NULL) != 0 ||
pthread_cond_init(&m_notEmpty, NULL) != 0)
{
cout << "init mutex or condition fail..." << endl;
break;
}

/////////////////// 创建线程 //////////////////
// 根据最小线程个数, 创建线程
for (int i = 0; i < minNum; ++i)
{
pthread_create(&m_threadIDs[i], NULL, worker, this);
cout << "创建子线程, ID: " << to_string(m_threadIDs[i]) << endl;
}
// 创建管理者线程, 1个
pthread_create(&m_managerID, NULL, manager, this);
} while (0);
}

ThreadPool::~ThreadPool()
{
m_shutdown = 1;
// 销毁管理者线程
pthread_join(m_managerID, NULL);
// 唤醒所有消费者线程
for (int i = 0; i < m_aliveNum; ++i)
{
pthread_cond_signal(&m_notEmpty);
}

if (m_taskQ) delete m_taskQ;
if (m_threadIDs) delete[]m_threadIDs;
pthread_mutex_destroy(&m_lock);
pthread_cond_destroy(&m_notEmpty);
}

void ThreadPool::addTask(Task task)
{
if (m_shutdown)
{
return;
}
// 添加任务,不需要加锁,任务队列中有锁
m_taskQ->addTask(task);
// 唤醒工作的线程
pthread_cond_signal(&m_notEmpty);
}

int ThreadPool::getAliveNumber()
{
int threadNum = 0;
pthread_mutex_lock(&m_lock);
threadNum = m_aliveNum;
pthread_mutex_unlock(&m_lock);
return threadNum;
}

int ThreadPool::getBusyNumber()
{
int busyNum = 0;
pthread_mutex_lock(&m_lock);
busyNum = m_busyNum;
pthread_mutex_unlock(&m_lock);
return busyNum;
}


// 工作线程任务函数
void* ThreadPool::worker(void* arg)
{
ThreadPool* pool = static_cast<ThreadPool*>(arg);
// 一直不停的工作
while (true)
{
// 访问任务队列(共享资源)加锁
pthread_mutex_lock(&pool->m_lock);
// 判断任务队列是否为空, 如果为空工作线程阻塞
while (pool->m_taskQ->taskNumber() == 0 && !pool->m_shutdown)
{
cout << "thread " << to_string(pthread_self()) << " waiting..." << endl;
// 阻塞线程
pthread_cond_wait(&pool->m_notEmpty, &pool->m_lock);

// 解除阻塞之后, 判断是否要销毁线程
if (pool->m_exitNum > 0)
{
pool->m_exitNum--;
if (pool->m_aliveNum > pool->m_minNum)
{
pool->m_aliveNum--;
pthread_mutex_unlock(&pool->m_lock);
pool->threadExit();
}
}
}
// 判断线程池是否被关闭了
if (pool->m_shutdown)
{
pthread_mutex_unlock(&pool->m_lock);
pool->threadExit();
}

// 从任务队列中取出一个任务
Task task = pool->m_taskQ->takeTask();
// 工作的线程+1
pool->m_busyNum++;
// 线程池解锁
pthread_mutex_unlock(&pool->m_lock);
// 执行任务
cout << "thread " << to_string(pthread_self()) << " start working..." << endl;
task.function(task.arg);
delete task.arg;
task.arg = nullptr;

// 任务处理结束
cout << "thread " << to_string(pthread_self()) << " end working...";
pthread_mutex_lock(&pool->m_lock);
pool->m_busyNum--;
pthread_mutex_unlock(&pool->m_lock);
}

return nullptr;
}


// 管理者线程任务函数
void* ThreadPool::manager(void* arg)
{
ThreadPool* pool = static_cast<ThreadPool*>(arg);
// 如果线程池没有关闭, 就一直检测
while (!pool->m_shutdown)
{
// 每隔5s检测一次
sleep(5);
// 取出线程池中的任务数和线程数量
// 取出工作的线程池数量
pthread_mutex_lock(&pool->m_lock);
int queueSize = pool->m_taskQ->taskNumber();
int liveNum = pool->m_aliveNum;
int busyNum = pool->m_busyNum;
pthread_mutex_unlock(&pool->m_lock);

// 创建线程
const int NUMBER = 2;
// 当前任务个数>存活的线程数 && 存活的线程数<最大线程个数
if (queueSize > liveNum && liveNum < pool->m_maxNum)
{
// 线程池加锁
pthread_mutex_lock(&pool->m_lock);
int num = 0;
for (int i = 0; i < pool->m_maxNum && num < NUMBER
&& pool->m_aliveNum < pool->m_maxNum; ++i)
{
if (pool->m_threadIDs[i] == 0)
{
pthread_create(&pool->m_threadIDs[i], NULL, worker, pool);
num++;
pool->m_aliveNum++;
}
}
pthread_mutex_unlock(&pool->m_lock);
}

// 销毁多余的线程
// 忙线程*2 < 存活的线程数目 && 存活的线程数 > 最小线程数量
if (busyNum * 2 < liveNum && liveNum > pool->m_minNum)
{
pthread_mutex_lock(&pool->m_lock);
pool->m_exitNum = NUMBER;
pthread_mutex_unlock(&pool->m_lock);
for (int i = 0; i < NUMBER; ++i)
{
pthread_cond_signal(&pool->m_notEmpty);
}
}
}
return nullptr;
}

// 线程退出
void ThreadPool::threadExit()
{
pthread_t tid = pthread_self();
for (int i = 0; i < m_maxNum; ++i)
{
if (m_threadIDs[i] == tid)
{
cout << "threadExit() function: thread "
<< to_string(pthread_self()) << " exiting..." << endl;
m_threadIDs[i] = 0;
break;
}
}
pthread_exit(NULL);
}
线程池C语言版